Data-Structures over Word
EVM uses bounded 256 bit integer words, and sometimes also bytes (8 bit words).
Here we provide the arithmetic of these words, as well as some data-structures over them.
Both are implemented using K's Int.
requires "word.md"
module EVM-TYPES
imports STRING
imports COLLECTIONS
imports K-EQUAL
imports JSON
imports WORD
Utilities
Boolean Conversions
Primitives provide the basic conversion from K's sorts Int and Bool to EVM's words.
bool2Wordinterprets aBoolas aInt.word2Boolinterprets aIntas aBool.
syntax Int ::= bool2Word ( Bool ) [function, functional, smtlib(bool2Word)]
// ---------------------------------------------------------------------------
rule bool2Word( B:Bool ) => 1 requires B
rule bool2Word( B:Bool ) => 0 requires notBool B
syntax Bool ::= word2Bool ( Int ) [function, functional]
// --------------------------------------------------------
rule word2Bool( W ) => false requires W ==Int 0
rule word2Bool( W ) => true requires W =/=Int 0
sgngives the twos-complement interperetation of the sign of a word.absgives the twos-complement interperetation of the magnitude of a word.
syntax Int ::= sgn ( Int ) [function, functional]
| abs ( Int ) [function, functional]
// -------------------------------------------------
rule sgn(I) => -1 requires pow255 <=Int I andBool I <Int pow256
rule sgn(I) => 1 requires 0 <=Int I andBool I <Int pow255
rule sgn(I) => 0 requires I <Int 0 orBool pow256 <=Int I
rule abs(I) => 0 -Word I requires sgn(I) ==Int -1
rule abs(I) => I requires sgn(I) ==Int 1
rule abs(I) => 0 requires sgn(I) ==Int 0
Word Operations
Low-Level
up/Intperforms integer division but rounds up instead of down.
NOTE: Here, we choose to add I2 -Int 1 to the numerator beforing doing the division to mimic the C++ implementation.
You could alternatively calculate I1 modInt I2, then add one to the normal integer division afterward depending on the result.
syntax Int ::= Int "up/Int" Int [function, functional, smtlib(upDivInt)]
// ------------------------------------------------------------------------
rule _I1 up/Int 0 => 0
rule _I1 up/Int I2 => 0 requires I2 <Int 0
rule I1 up/Int 1 => I1
rule [upDivInt] : I1 up/Int I2 => (I1 +Int (I2 -Int 1)) /Int I2 requires I2 >Int 1
log256Intreturns the log base 256 (floored) of an integer.
syntax Int ::= log256Int ( Int ) [function]
// -------------------------------------------
rule log256Int(N) => log2Int(N) /Int 8
The corresponding <op>Word operations automatically perform the correct modulus for EVM words.
Warning: operands are assumed to be within the range of a 256 bit EVM word. Unbound integers may not return the correct result.
syntax Int ::= Int "+Word" Int [function, functional]
| Int "*Word" Int [function, functional]
| Int "-Word" Int [function, functional]
| Int "/Word" Int [function, functional]
| Int "%Word" Int [function, functional]
// -----------------------------------------------------
rule W0 +Word W1 => chop( W0 +Int W1 )
rule W0 -Word W1 => chop( W0 -Int W1 )
rule W0 *Word W1 => chop( W0 *Int W1 )
rule _ /Word W1 => 0 requires W1 ==Int 0
rule W0 /Word W1 => W0 /Int W1 requires W1 =/=Int 0
rule _ %Word W1 => 0 requires W1 ==Int 0
rule W0 %Word W1 => W0 modInt W1 requires W1 =/=Int 0
Care is needed for ^Word to avoid big exponentiation.
The helper powmod is a totalization of the operator _^%Int__ (which comes with K).
_^%Int__ is not defined when the modulus (third argument) is zero, but powmod is.
syntax Int ::= Int "^Word" Int [function]
syntax Int ::= powmod(Int, Int, Int) [function, functional]
// -----------------------------------------------------------
rule W0 ^Word W1 => powmod(W0, W1, pow256)
rule [powmod.nonzero]: powmod(W0, W1, W2) => W0 ^%Int W1 W2 requires W2 =/=Int 0
rule [powmod.zero]: powmod( _, _, W2) => 0 requires W2 ==Int 0
/sWord and %sWord give the signed interperetations of /Word and %Word.
syntax Int ::= Int "/sWord" Int [function]
| Int "%sWord" Int [function]
// ------------------------------------------
rule [divSWord.same]: W0 /sWord W1 => abs(W0) /Word abs(W1) requires sgn(W0) *Int sgn(W1) ==Int 1
rule [divSWord.diff]: W0 /sWord W1 => 0 -Word (abs(W0) /Word abs(W1)) requires sgn(W0) *Int sgn(W1) ==Int -1
rule [modSWord.pos]: W0 %sWord W1 => abs(W0) %Word abs(W1) requires sgn(W0) ==Int 1
rule [modSWord.neg]: W0 %sWord W1 => 0 -Word (abs(W0) %Word abs(W1)) requires sgn(W0) ==Int -1
Word Comparison
The <op>Word comparisons similarly lift K operators to EVM ones:
syntax Int ::= Int "<Word" Int [function, functional]
| Int ">Word" Int [function, functional]
| Int "<=Word" Int [function, functional]
| Int ">=Word" Int [function, functional]
| Int "==Word" Int [function, functional]
// ------------------------------------------------------
rule W0 <Word W1 => bool2Word(W0 <Int W1)
rule W0 >Word W1 => bool2Word(W0 >Int W1)
rule W0 <=Word W1 => bool2Word(W0 <=Int W1)
rule W0 >=Word W1 => bool2Word(W0 >=Int W1)
rule W0 ==Word W1 => bool2Word(W0 ==Int W1)
s<Wordimplements a less-than forWord(with signed interperetation).
syntax Int ::= Int "s<Word" Int [function, functional]
// ------------------------------------------------------
rule [s<Word.pp]: W0 s<Word W1 => W0 <Word W1 requires sgn(W0) ==K 1 andBool sgn(W1) ==K 1
rule [s<Word.pn]: W0 s<Word W1 => bool2Word(false) requires sgn(W0) ==K 1 andBool sgn(W1) ==K -1
rule [s<Word.np]: W0 s<Word W1 => bool2Word(true) requires sgn(W0) ==K -1 andBool sgn(W1) ==K 1
rule [s<Word.nn]: W0 s<Word W1 => abs(W1) <Word abs(W0) requires sgn(W0) ==K -1 andBool sgn(W1) ==K -1
Bitwise Operators
Bitwise logical operators are lifted from the integer versions.
syntax Int ::= "~Word" Int [function, functional]
| Int "|Word" Int [function, functional]
| Int "&Word" Int [function, functional]
| Int "xorWord" Int [function, functional]
| Int "<<Word" Int [function]
| Int ">>Word" Int [function]
| Int ">>sWord" Int [function]
// -------------------------------------------
rule ~Word W => W xorInt maxUInt256
rule W0 |Word W1 => W0 |Int W1
rule W0 &Word W1 => W0 &Int W1
rule W0 xorWord W1 => W0 xorInt W1
rule W0 <<Word W1 => chop( W0 <<Int W1 ) requires W1 <Int 256
rule _ <<Word W1 => 0 requires W1 >=Int 256
rule W0 >>Word W1 => W0 >>Int W1
rule W0 >>sWord W1 => chop( (abs(W0) *Int sgn(W0)) >>Int W1 )
bitgets bitN(0 being MSB).bytegets byteN(0 being the MSB).
syntax Int ::= bit ( Int , Int ) [function]
| byte ( Int , Int ) [function]
// --------------------------------------------
rule bit (N, _) => 0 requires notBool (N >=Int 0 andBool N <Int 256)
rule byte(N, _) => 0 requires notBool (N >=Int 0 andBool N <Int 32)
rule bit (N, W) => bitRangeInt(W , (255 -Int N) , 1) requires N >=Int 0 andBool N <Int 256
rule byte(N, W) => bitRangeInt(W , ( 31 -Int N) *Int 8 , 8) requires N >=Int 0 andBool N <Int 32
#nBitsshifts inNones from the right.#nBytesshifts inNbytes of ones from the right.
syntax Int ::= #nBits ( Int ) [function]
| #nBytes ( Int ) [function]
// ------------------------------------------
rule #nBits(N) => (1 <<Int N) -Int 1 requires N >=Int 0
rule #nBytes(N) => #nBits(N *Int 8) requires N >=Int 0
signextend(N, W)sign-extends from byteNofW(0 being MSB).
syntax Int ::= signextend( Int , Int ) [function, functional]
// -------------------------------------------------------------
rule [signextend.invalid]: signextend(N, W) => W requires N >=Int 32 orBool N <Int 0
rule [signextend.negative]: signextend(N, W) => chop( (#nBytes(31 -Int N) <<Byte (N +Int 1)) |Int W ) requires N <Int 32 andBool N >=Int 0 andBool word2Bool(bit(256 -Int (8 *Int (N +Int 1)), W))
rule [signextend.positive]: signextend(N, W) => chop( #nBytes(N +Int 1) &Int W ) requires N <Int 32 andBool N >=Int 0 andBool notBool word2Bool(bit(256 -Int (8 *Int (N +Int 1)), W))
A WordStack for EVM
As a cons-list
A cons-list is used for the EVM wordstack.
.WordStackserves as the empty worstack, and_:_serves as the "cons" operator.
syntax WordStack ::= ".WordStack" [smtlib(_dotWS)]
| Int ":" WordStack [klabel(_:_WS), smtlib(_WS_)]
// --------------------------------------------------------------------
syntax Bytes ::= Int ":" Bytes [function]
// -----------------------------------------
rule I : BS => Int2Bytes(1, I, BE) ++ BS requires I <Int 256
#take(N , WS)keeps the firstNelements of aWordStack(passing with zeros as needed).#drop(N , WS)removes the firstNelements of aWordStack.
syntax WordStack ::= #take ( Int , WordStack ) [klabel(takeWordStack), function, functional]
// --------------------------------------------------------------------------------------------
rule [#take.base]: #take(N, _WS) => .WordStack requires notBool N >Int 0
rule [#take.zero-pad]: #take(N, .WordStack) => 0 : #take(N -Int 1, .WordStack) requires N >Int 0
rule [#take.recursive]: #take(N, (W : WS):WordStack) => W : #take(N -Int 1, WS) requires N >Int 0
syntax WordStack ::= #drop ( Int , WordStack ) [klabel(dropWordStack), function, functional]
// --------------------------------------------------------------------------------------------
rule #drop(N, WS:WordStack) => WS requires notBool N >Int 0
rule #drop(N, .WordStack) => .WordStack requires N >Int 0
rule #drop(N, (W : WS):WordStack) => #drop(1, #drop(N -Int 1, (W : WS))) requires N >Int 1
rule #drop(1, (_ : WS):WordStack) => WS
syntax Bytes ::= #take ( Int , Bytes ) [klabel(takeBytes), function, functional]
// --------------------------------------------------------------------------------
rule #take(N, _BS:Bytes) => .Bytes requires notBool N >Int 0
rule #take(N, BS:Bytes) => #padRightToWidth(N, .Bytes) requires notBool lengthBytes(BS) >Int 0 andBool N >Int 0
rule #take(N, BS:Bytes) => BS ++ #take(N -Int lengthBytes(BS), .Bytes) requires lengthBytes(BS) >Int 0 andBool notBool N >Int lengthBytes(BS)
rule #take(N, BS:Bytes) => BS [ 0 .. N ] requires lengthBytes(BS) >Int 0 andBool N >Int lengthBytes(BS)
syntax Bytes ::= #drop ( Int , Bytes ) [klabel(dropBytes), function, functional]
// --------------------------------------------------------------------------------
rule #drop(N, BS:Bytes) => BS requires notBool N >Int 0
rule #drop(N, BS:Bytes) => .Bytes requires notBool lengthBytes(BS) >Int 0 andBool N >Int 0
rule #drop(N, BS:Bytes) => .Bytes requires lengthBytes(BS) >Int 0 andBool N >Int lengthBytes(BS)
rule #drop(N, BS:Bytes) => substrBytes(BS, N, lengthBytes(BS)) requires lengthBytes(BS) >Int 0 andBool notBool N >Int lengthBytes(BS)
Element Access
WS [ N ]accesses elementNofWS.WS [ N := W ]sets elementNofWStoW(padding with zeros as needed).
syntax Int ::= WordStack "[" Int "]" [function, functional]
// -----------------------------------------------------------
rule (W : _):WordStack [ N ] => W requires N ==Int 0
rule WS:WordStack [ N ] => #drop(N, WS) [ 0 ] requires N >Int 0
rule _:WordStack [ N ] => 0 requires N <Int 0
syntax WordStack ::= WordStack "[" Int ":=" Int "]" [function, functional]
// --------------------------------------------------------------------------
rule (_W0 : WS):WordStack [ N := W ] => W : WS requires N ==Int 0
rule ( W0 : WS):WordStack [ N := W ] => W0 : (WS [ N -Int 1 := W ]) requires N >Int 0
rule WS :WordStack [ N := _ ] => WS requires N <Int 0
rule .WordStack [ N := W ] => (0 : .WordStack) [ N := W ]
#sizeWordStackcalculates the size of aWordStack._in_determines if aIntoccurs in aWordStack.
syntax Int ::= #sizeWordStack ( WordStack ) [function, functional, smtlib(sizeWordStack)]
| #sizeWordStack ( WordStack , Int ) [function, functional, klabel(sizeWordStackAux), smtlib(sizeWordStackAux)]
// ----------------------------------------------------------------------------------------------------------------------------
rule #sizeWordStack ( WS ) => #sizeWordStack(WS, 0)
rule #sizeWordStack ( .WordStack, SIZE ) => SIZE
rule #sizeWordStack ( _ : WS, SIZE ) => #sizeWordStack(WS, SIZE +Int 1)
syntax Bool ::= Int "in" WordStack [function]
// ---------------------------------------------
rule _ in .WordStack => false
rule W in (W' : WS) => (W ==K W') orElseBool (W in WS)
#replicateAuxpushesNcopies ofAonto aWordStack.#replicateis aWordStackof lengthNwithAthe value of every element.
syntax WordStack ::= #replicate ( Int, Int ) [function, functional]
| #replicateAux ( Int, Int, WordStack ) [function, functional]
// ---------------------------------------------------------------------------------
rule #replicate ( N, A ) => #replicateAux(N, A, .WordStack)
rule #replicateAux( N, A, WS ) => #replicateAux(N -Int 1, A, A : WS) requires N >Int 0
rule #replicateAux( N, _A, WS ) => WS requires notBool N >Int 0
WordStack2Listconverts a term of sortWordStackto a term of sortList.
syntax List ::= WordStack2List ( WordStack ) [function, functional]
// -------------------------------------------------------------------
rule WordStack2List(.WordStack) => .List
rule WordStack2List(W : WS) => ListItem(W) WordStack2List(WS)
Local Memory
Most of EVM data is held in local memory.
WM [ N := WS ]assigns a contiguous chunk ofWMtoWSstarting at positionW.#range(WM, START, WIDTH)reads offWIDTHelements fromWMbeginning at positionSTART(padding with zeros as needed).
syntax Memory = Bytes
syntax Memory ::= Memory "[" Int ":=" ByteArray "]" [function, functional, klabel(mapWriteBytes)]
// -------------------------------------------------------------------------------------------------
rule WS [ START := WS' ] => replaceAtBytes(padRightBytes(WS, START +Int #sizeByteArray(WS'), 0), START, WS') requires START >=Int 0 [concrete]
rule _ [ START := _:ByteArray ] => .Memory requires START <Int 0 [concrete]
syntax ByteArray ::= #range ( Memory , Int , Int ) [function, functional]
// -------------------------------------------------------------------------
rule #range(LM, START, WIDTH) => LM [ START .. WIDTH ] [concrete]
syntax Memory ::= ".Memory" [macro]
// -----------------------------------
rule .Memory => .Bytes
syntax Memory ::= Memory "[" Int ":=" Int "]" [function]
// --------------------------------------------------------
rule WM [ IDX := VAL ] => padRightBytes(WM, IDX +Int 1, 0) [ IDX <- VAL ]
syntax Memory = Map
syntax Memory ::= Memory "[" Int ":=" ByteArray "]" [function, functional]
// --------------------------------------------------------------------------
rule [mapWriteBytes.base]: WM[ _N := .WordStack ] => WM
rule [mapWriteBytes.recursive]: WM[ N := W : WS ] => (WM[N <- W])[N +Int 1 := WS]
syntax ByteArray ::= #range ( Memory , Int , Int ) [function, functional]
syntax ByteArray ::= #range ( Memory , Int , Int , ByteArray ) [function, functional, klabel(#rangeAux)]
// --------------------------------------------------------------------------------------------------------
rule [#range]: #range(WM, START, WIDTH) => #range(WM, START +Int WIDTH -Int 1, WIDTH, .WordStack)
rule [#rangeAux.base]: #range( _, _END, WIDTH, WS) => WS requires notBool 0 <Int WIDTH
rule [#rangeAux.rec]: #range(WM, END => END -Int 1, WIDTH => WIDTH -Int 1, WS => #lookupMemory(WM, END) : WS) requires 0 <Int WIDTH
syntax Memory ::= ".Memory" [macro]
// -----------------------------------
rule .Memory => .Map
syntax Memory ::= Memory "[" Int ":=" Int "]" [function]
// --------------------------------------------------------
rule WM [ IDX := VAL:Int ] => WM [ IDX <- VAL ]
Byte Arrays
The local memory of execution is a byte-array (instead of a word-array).
#asWordwill interperet a stack of bytes as a single word (with MSB first).#asIntegerwill interperet a stack of bytes as a single arbitrary-precision integer (with MSB first).#asAccountwill interpret a stack of bytes as a single account id (with MSB first). Differs from#asWordonly in that an empty stack represents the empty account, not account zero.#asByteStackwill split a single word up into aByteArray._++_acts asByteArrayappend.WS [ N .. W ]access the range ofWSbeginning withNof widthW.#sizeByteArraycalculates the size of aByteArray.#padToWidth(N, WS)and#padRightToWidthmake sure that aWordStackis the correct size.
syntax ByteArray = Bytes
syntax ByteArray ::= ".ByteArray" [macro]
// -----------------------------------------
rule .ByteArray => .Bytes
syntax Int ::= #asWord ( ByteArray ) [function, functional, smtlib(asWord)]
// ---------------------------------------------------------------------------
rule #asWord(WS) => chop(Bytes2Int(WS, BE, Unsigned)) [concrete]
syntax Int ::= #asInteger ( ByteArray ) [function, functional]
// --------------------------------------------------------------
rule #asInteger(WS) => Bytes2Int(WS, BE, Unsigned) [concrete]
syntax Account ::= #asAccount ( ByteArray ) [function]
// ------------------------------------------------------
rule #asAccount(BS) => .Account requires lengthBytes(BS) ==Int 0
rule #asAccount(BS) => #asWord(BS) [owise]
syntax ByteArray ::= #asByteStack ( Int ) [function, functional]
// ----------------------------------------------------------------
rule #asByteStack(W) => Int2Bytes(W, BE, Unsigned) [concrete]
syntax ByteArray ::= ByteArray "++" ByteArray [function, functional, right, klabel(_++_WS), smtlib(_plusWS_)]
// -------------------------------------------------------------------------------------------------------------
rule WS ++ WS' => WS +Bytes WS' [concrete]
syntax ByteArray ::= ByteArray "[" Int ".." Int "]" [function, functional]
// --------------------------------------------------------------------------
rule _ [ START .. WIDTH ] => .ByteArray requires notBool (WIDTH >=Int 0 andBool START >=Int 0)
rule [bytesRange] : WS [ START .. WIDTH ] => substrBytes(padRightBytes(WS, START +Int WIDTH, 0), START, START +Int WIDTH)
requires WIDTH >=Int 0 andBool START >=Int 0 andBool START <Int #sizeByteArray(WS)
rule _ [ _ .. WIDTH ] => padRightBytes(.Bytes, WIDTH, 0) [owise]
syntax Int ::= #sizeByteArray ( ByteArray ) [function, functional, klabel(sizeByteArray), smtlib(sizeByteArray)]
// ----------------------------------------------------------------------------------------------------------------
rule #sizeByteArray ( WS ) => lengthBytes(WS) [concrete]
syntax ByteArray ::= #padToWidth ( Int , ByteArray ) [function, functional]
| #padRightToWidth ( Int , ByteArray ) [function, functional]
// --------------------------------------------------------------------------------
rule #padToWidth(N, BS) => BS requires notBool (N >=Int 0)
rule [padToWidthNonEmpty] : #padToWidth(N, BS) => padLeftBytes(BS, N, 0) requires N >=Int 0
rule #padRightToWidth(N, BS) => BS requires notBool (N >=Int 0)
rule #padRightToWidth(N, BS) => padRightBytes(BS, N, 0) requires N >=Int 0
syntax ByteArray = WordStack
syntax ByteArray ::= ".ByteArray" [macro]
// -----------------------------------------
rule .ByteArray => .WordStack
syntax Int ::= #asWord ( ByteArray ) [function, functional, smtlib(asWord)]
// ---------------------------------------------------------------------------
rule [#asWord.base-empty]: #asWord( .WordStack ) => 0
rule [#asWord.base-single]: #asWord( W : .WordStack ) => W
rule [#asWord.recursive]: #asWord( W0 : W1 : WS ) => #asWord(((W0 *Word 256) +Word W1) : WS)
syntax Int ::= #asInteger ( ByteArray ) [function]
// --------------------------------------------------
rule #asInteger( .WordStack ) => 0
rule #asInteger( W : .WordStack ) => W
rule #asInteger( W0 : W1 : WS ) => #asInteger(((W0 *Int 256) +Int W1) : WS)
syntax Account ::= #asAccount ( ByteArray ) [function]
// ------------------------------------------------------
rule #asAccount( .WordStack ) => .Account
rule #asAccount( W : WS ) => #asWord(W : WS)
syntax ByteArray ::= #asByteStack ( Int ) [function, functional]
| #asByteStack ( Int , ByteArray ) [function, klabel(#asByteStackAux), smtlib(asByteStack)]
// --------------------------------------------------------------------------------------------------------------
rule [#asByteStack]: #asByteStack( W ) => #asByteStack( W , .WordStack )
rule [#asByteStackAux.base]: #asByteStack( 0 , WS ) => WS
rule [#asByteStackAux.recursive]: #asByteStack( W , WS ) => #asByteStack( W /Int 256 , W modInt 256 : WS ) requires W =/=K 0
syntax ByteArray ::= ByteArray "++" ByteArray [function, memo, right, klabel(_++_WS), smtlib(_plusWS_)]
// -------------------------------------------------------------------------------------------------------
rule .WordStack ++ WS' => WS'
rule (W : WS) ++ WS' => W : (WS ++ WS')
syntax ByteArray ::= ByteArray "[" Int ".." Int "]" [function, functional, memo]
// --------------------------------------------------------------------------------
rule [ByteArray.range]: WS [ START .. WIDTH ] => #take(WIDTH, #drop(START, WS))
syntax Int ::= #sizeByteArray ( ByteArray ) [function, functional, smtlib(sizeByteArray), memo]
// -----------------------------------------------------------------------------------------------
rule #sizeByteArray ( WS ) => #sizeWordStack(WS) [concrete]
syntax ByteArray ::= #padToWidth ( Int , ByteArray ) [function, functional, memo]
| #padRightToWidth ( Int , ByteArray ) [function, memo]
// --------------------------------------------------------------------------------------
rule [#padToWidth]: #padToWidth(N, WS) => #replicateAux(N -Int #sizeByteArray(WS), 0, WS)
rule [#padRightToWidth]: #padRightToWidth(N, WS) => WS ++ #replicate(N -Int #sizeByteArray(WS), 0)
Accounts
Empty Account
.Accountrepresents the case when an account ID is referenced in the yellowpaper, but the actual value of the account ID is the empty set. This is used, for example, when referring to the destination of a message which creates a new contract.
syntax Account ::= ".Account" | Int
// -----------------------------------
Addresses
#addrturns an Ethereum word into the corresponding Ethereum address (160 LSB).
syntax Int ::= #addr ( Int ) [function]
// ---------------------------------------
rule #addr(W) => W %Word pow160
Storage/Memory Lookup
#lookup* looks up a key in a map and returns 0 if the key doesn't exist, otherwise returning its value.
syntax Int ::= #lookup ( Map , Int ) [function, functional, smtlib(lookup)]
| #lookupMemory ( Map , Int ) [function, functional, smtlib(lookupMemory)]
// ----------------------------------------------------------------------------------------
rule [#lookup.some]: #lookup( (KEY |-> VAL:Int) _M, KEY ) => VAL modInt pow256
rule [#lookup.none]: #lookup( M, KEY ) => 0 requires notBool KEY in_keys(M)
//Impossible case, for completeness
rule [#lookup.notInt]: #lookup( (KEY |-> VAL ) _M, KEY ) => 0 requires notBool isInt(VAL)
rule [#lookupMemory.some]: #lookupMemory( (KEY |-> VAL:Int) _M, KEY ) => VAL modInt 256
rule [#lookupMemory.none]: #lookupMemory( M, KEY ) => 0 requires notBool KEY in_keys(M)
//Impossible case, for completeness
rule [#lookupMemory.notInt]: #lookupMemory( (KEY |-> VAL ) _M, KEY ) => 0 requires notBool isInt(VAL)
Substate Log
During execution of a transaction some things are recorded in the substate log (Section 6.1 in YellowPaper).
This is a right cons-list of SubstateLogEntry (which contains the account ID along with the specified portions of the wordStack and localMem).
syntax SubstateLogEntry ::= "{" Int "|" List "|" ByteArray "}" [klabel(logEntry)]
// ---------------------------------------------------------------------------------
Transactions
Productions related to transactions
syntax TxType ::= ".TxType"
| "Legacy"
| "AccessList"
| "DynamicFee"
// ------------------------------
syntax Int ::= #dasmTxPrefix ( TxType ) [function]
// --------------------------------------------------
rule #dasmTxPrefix (Legacy) => 0
rule #dasmTxPrefix (AccessList) => 1
rule #dasmTxPrefix (DynamicFee) => 2
syntax TxType ::= #asmTxPrefix ( Int ) [function]
// -------------------------------------------------
rule #asmTxPrefix (0) => Legacy
rule #asmTxPrefix (1) => AccessList
rule #asmTxPrefix (2) => DynamicFee
syntax TxData ::= LegacyTx | AccessListTx | DynamicFeeTx
// --------------------------------------------------------
syntax LegacyTx ::= LegacyTxData ( nonce: Int, gasPrice: Int, gasLimit: Int, to: Account, value: Int, data: ByteArray )
| LegacyProtectedTxData( nonce: Int, gasPrice: Int, gasLimit: Int, to: Account, value: Int, data: ByteArray, chainId: Int )
syntax AccessListTx ::= AccessListTxData ( nonce: Int, gasPrice: Int, gasLimit: Int, to: Account, value: Int, data: ByteArray, chainId: Int, accessLists: JSONs )
syntax DynamicFeeTx ::= DynamicFeeTxData ( nonce : Int , priorityGasFee : Int , maxGasFee : Int , gasLimit : Int , to : Account
, value : Int , data : ByteArray , chainId : Int , accessLists : JSONs
)
// ---------------------------------------------------------------------------------------------------------------------------------------------------------------------
endmodule